

XI ВСЕРОССИЙСКИЙ НАЦИОНАЛЬНЫЙ КОНГРЕСС ЛУЧЕВЫХ ДИАГНОСТОВ И ТЕРАПЕВТОВ

РАДИОЛОГИЯ – 2017

23-25 МАЯ

2017 ГОД

MOCKBA

МАТЕРИАЛЫ КОНГРЕССА

МАТЕРИАЛЫ

ХІ ВСЕРОССИЙСКОГО НАЦИОНАЛЬНОГО КОНГРЕССА ЛУЧЕВЫХ ДИАГНОСТОВ И ТЕРАПЕВТОВ «РАДИОЛОГИЯ – 2017»

23–25 мая 2017 года г. Москва

M., 2017 - 371 c.

ISBN 978-5-906484-32-1

©«МЕДИ Экспо», 2017

▶ СОДЕРЖАНИЕ▶ В НАЧАЛО▶ СПИСОК АВТОРОВ

плоскости успешная визуализация суставного диска, в том числе его медиальной и латеральной дислокации достигнута в 98% исследований. Сравнение МРТ- и МСКТ-данных по варианту смещения диска не выявило противоречий.

Общие выводы

Усовершенствование программного обеспечения компьютерных томографов самих аппаратов позволяет оценивать суставной диск ВНЧС, а это значит, что время обследования значительно сокращается, снижается его стоимость, создаются более комфортные условия для пациентов. В настоящее время МСКТ может быть использована в качестве альтернативы МРТ для визуализации патологических изменений мягкотканых элементов ВНЧС.

ЛУЧЕВЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ НА ПОСЛЕОПЕРАЦИОННОМ ЭТАПЕ КОХЛЕАРНОЙ ИМПЛАНТАЦИИ

Иванова И.В., Лежнев Д.А., Диаб Х.М., Соколова В.Н., Макарова Д.В.

ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России Москва

Цель

Определить возможности мультисрезовой томографии (МСКТ) и конусно-лучевой компьютерной томографии (КЛКТ) в оценке размещения имплантата при кохлеарной имплантации.

Материалы и методы

Проведен сравнительный анализ результатов исследования имплантированных кадаверных височных костей и височных костей 3 пациентов после односторонней КИ. Исследования выполнялись на компьютерном томографе Brilliance 64 (Philips, Нидерланды) и конусно-лучевом томографе NewTom 5G (QR s.r.l., Италия).

Результат

Независимо от техники введения имплантата (трансмембранно или через кохлеостому), в каждом случае оценивали положение электродной решетки по отношению к структурам лабиринта, ее расположение в спиральном канале улитки и дифференцировку отдельных электродных контактов. Для анатомиче-

ской детализации структур внутреннего уха выполняли несколько реконструкций:

- 1) в косой корональной проекции, в плоскости проходящей через базальный оборот улитки с увеличением толщины слоя до 5 мм, что обеспечивало оценку интракохлеарного расположения и глубину введения электродной решетки;
- 2) расположение решетки в барабанной лестнице оценивали в косой сагитальной проекции, в плоскости проходящей через центр модиолиуса;
- 3) траекторию размещения электрода, а также расстояние от внутренней стенки базального завитка улитки до отдельных электродных контактов, анализировали в косой аксиальной плоскости. Точное позиционирование электродной решетки в улитке выявлялось одинаково достоверно как с помощью МСКТ, так и при КЛКТ. Возможности КЛКТ в идентификации отдельных электродных контактов превосходили данные полученные при МСКТ за счет снижения количества металлических артефактов. При этом отчетливая идентификация отдельных электродных контактов была возможна как на уровне базального, так и апикального завитков улитки. В одном случае при проведении КЛКТ были получены значительные артефакты от движения головой, что значительно ухудшило качество изображений. Во всех исследованиях возможно было определить положение имплантата в спиральном канале улитки, при этом размещение в барабанной лестнице расценивали в том случае, когда решетка занимала латеральное положение, располагаясь по нижне-боковой стенке улитки.

Общие выводы

Лучевые методы исследования в послеоперационном периоде КИ обеспечивают точную локализацию имплантата и позволяют оценить результаты слухоречевой реабилитации. Отсутствие значимых артефактов, связанных с металлическими элементами имплантата, без потери качества получаемых изображений при КЛКТ способствует своевременной диагностике интракохлеарной травмы, обусловленной неправильным размещением электродной решетки в спиральном канале улитки.